

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-19/0802 of 18 September 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20

Post-installed fasteners in concrete under fatigue cyclic loading

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Plants

23 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

ETA-19/0802 issued on 18 July 2023

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z155931.24

European Technical Assessment ETA-19/0802

English translation prepared by DIBt

Page 2 of 23 | 18 September 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 18 September 2024

Specific Part

1 Technical description of the product

The Injection systems Hilti HIT-HY 200-A, HIT-HY 200-A V3 or HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16 or HIT-Z M20 are bonded expansion fasteners consisting of a cartridge with injection mortar Hilti HIT-HY 200-A or Hilti HIT 200-A V3 or Hilti HIT 200-R V3, a steel element HIT-Z-D TP with a lock nut, a calotte nut and a Hilti sealing washer or a steel element HIT-Z-R-D TP or HIT-Z with a lock nut, a hexagon nut, a spherical washer and a Hilti sealing washer.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the base material (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance	
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B2, B3, C1	
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C2	
Displacements under short-term and long-term loading (static and quasi-static loading)	No performance assessed on basis of EAD 330250-00-0601	
Characteristic resistance and displacements for seismic performance categories C1 and C2		

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance	
Characteristic fatigue resistance under cyclic tension loading		
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)	Soc Appoy	
Characteristic concrete cone, pull-out and splitting fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,p,0,n}$ $\Delta N_{Rk,sp,0,n}$ $(n=1 \text{ to } n=\infty)$	See Annex C3 and C5	

Page 4 of 23 | 18 September 2024

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance			
Characteristic fatigue resistance under cyclic shear loading				
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)	See Annex C4 and C5			
Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ $(n=1 \text{ to } n=\infty)$				
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (n = 1 to n = ∞)				
Characteristic fatigue resistance under cyclic combined tension and shear loading				
Characteristic steel fatigue resistance a_{sn} ($n = 1$ to $n = \infty$)	See Annex C6			
Load transfer factor for cyclic tension and shear loading				
Load transfer factor ψ_{FN}, ψ_{FV}	See Annex C3 to C5			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance	
Content, emission and/or release of dangerous substances	No performance assessed	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

European Technical Assessment ETA-19/0802

English translation prepared by DIBt

Page 5 of 23 | 18 September 2024

The following standards and documents are referred to in this European Technical Assessment:

- EN 10088-1:2023 Stainless steels - Part 1: List of stainless steels

- EN 206:2013 + A1:2016 Concrete - Specification, performance, production and conformity

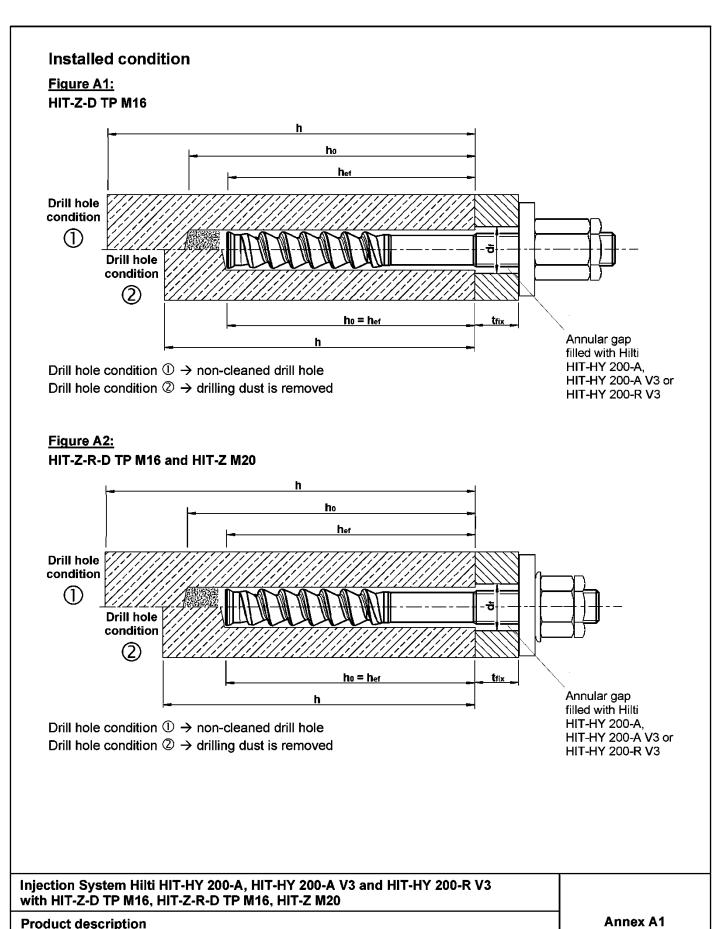
- EN 1992-4:2018 Eurocode 2: Design of concrete structures - Part 4: Design of

fastenings for use in concrete

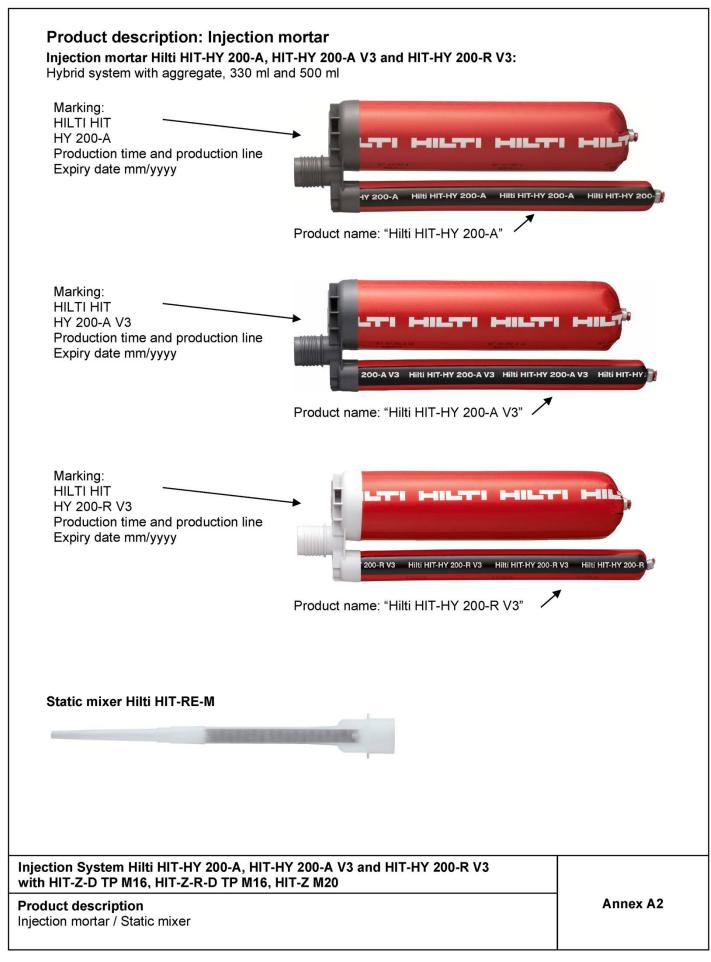
- EOTA TR 055 Design of fastenings based on EAD 330232-00-0601,

EAD 330499-00-0601 and EAD 330747-00-0601, February 2018

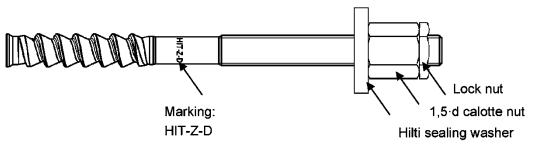
Issued in Berlin on 18 September 2024 by Deutsches Institut für Bautechnik

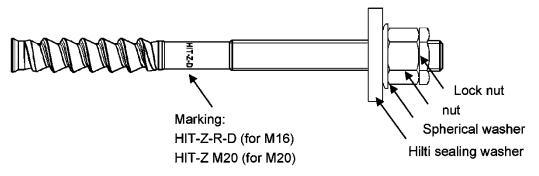

Dipl.-Ing. Beatrix Wittstock

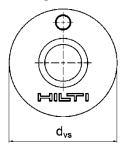
Head of Section

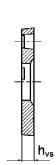

Stiller

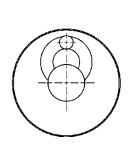
Installed condition

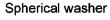


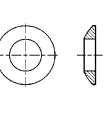





Fastener HIT-Z-R-D TP M16 and HIT-Z M20




Hilti Filling Set to fill the annular gap between fastener and fixture



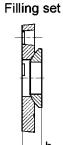


Table A1: Geometry of Hilti filling set

Size			M16	M20
Diameter of sealing washer	dvs	[mm]	52	60
Thickness of sealing washer	h _{vs}	[mm]	6	6
Thickness of Hilti Filling Set	h _{fs}	[mm]	11	13

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20

Product description

Steel elements / Filling set

Annex A3

Table A2: Materials

able Az. Materiais				
Material				
Metal parts made of zinc coated steel				
f_{uk} = 610 N/mm²; f_{yk} = 490 N/mm² Elongation at fracture (l_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m				
f_{uk} = 595 N/mm²; f_{yk} = 480 N/mm² Elongation at fracture (lo=5d) > 8% ductile Electroplated zinc coated \geq 5 μ m				
Electroplated zinc coated ≥ 5 μm				
Hexagon nut with a height of 1,5 d Electroplated zinc coated ≥ 5 μm				
Electroplated zinc coated ≥ 5 μm				
Strength class of nut adapted to strength class of anchor rod. Electroplated zinc coated \geq 5 μm				
Electroplated zinc coated ≥ 5 μm				
stainless steel e class III according EN 1993-1-4				
f_{uk} = 610 N/mm²; f_{yk} = 490 N/mm² Elongation at fracture (I_0 =5d) > 8% ductile Stainless steel 1.4401, 1.4404 EN 10088-1				
Stainless steel according to EN 10088-1				
Stainless steel according to EN 10088-1				
Strength class of nut adapted to strength class of anchor rod. Stainless steel according to EN 10088-1				
Stainless steel according to EN 10088-1				

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3
with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20

Product description Materials

Annex A4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loading.
- · Fatigue cyclic loading.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206.
- Strength classes C20/25 to C50/60 according to EN 206.
- Cracked and uncracked concrete.

Temperature in the base material:

· at installation

+5 °C to +40 °C

· in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4 corresponding to corrosion resistance classes Annex A4 Table A2 (stainless steels).

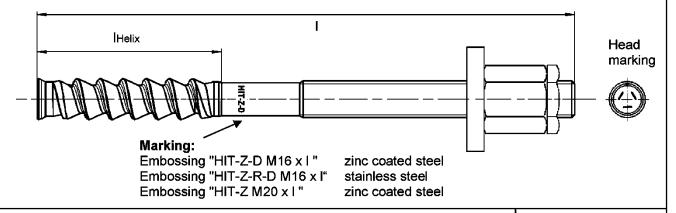
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under fatigue cycling loading are designed in accordance with: EN 1992-4 or EOTA Technical Report TR 061 (Design method I and II).

Installation:

- Concrete condition I1:
 - Installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- Installation direction: D3: downward and horizontal and upward (e.g. overhead).
- Drilling technique: hammer drilling, hammer drilling with hollow drill bit TE-CD, TE-YD, diamond coring.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	
Intended use Specifications	Annex B1


Table B1: Installation parameters HIT-Z(-R)-D TP

HIT-Z-D TP; HIT-Z-R-D TP			M16	M20	
Nominal diameter		d	[mm]	16	20
Nominal diameter of drill	bit	d ₀	[mm]	18	22
Longth of factorier		min I	[mm]	175	215
Length of fastener		max I	[mm]	240	250
Length of helix		I_{Helix}	[mm]	96	100
Nominal anchorage depth		h _{ef}	[mm]	125	140
Drill hole condition ① Minimum thickness of co	ncrete member	h _{min}	[mm]	225	240
Drill hole condition ② Minimum thickness of concrete member		h _{min}	[mm]	160	185
Maximum depth of drill he	ole	h₀	[mm]	h – 2 d ₀	h – 2 d ₀
Pre-setting: Maximum diameter of cle in the fixture	earance hole	d _f	[mm]	18	22
Through-setting: Maximum diameter of clearance hole in the fixture		d _f	[mm]	20	24
Maximum fixture thickness	SS	t fix	[mm]	80	75
Installation torque	HIT-Z-D TP, HIT-Z	T _{inst}	[Nm]	80	150
moment	HIT-Z-R-D TP	T _{inst}	[Nm]	155	-

Table B2: Methods for application of torque

HIT-Z-D TP; HIT-Z-R-D TP		M16	M20
Torque wrench	(200) (c) Tables Commons Servi (1996) (c) (c)	✓	✓
Machine torqueing with Hilti SIW 6AT impact wrench and SI-AT adaptive torque module 1)		*	✓

¹⁾ Equivalent combination of Hilti SIW + SI-AT tool, compatible to this anchor type, may be used.

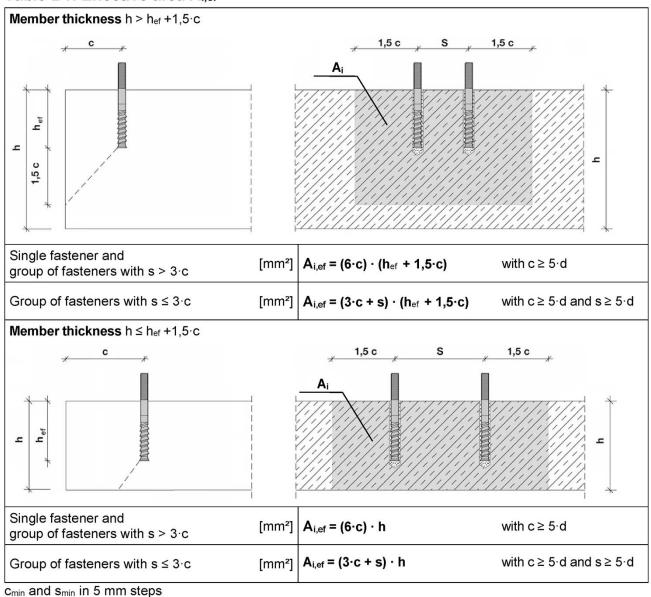
Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3	
with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	

Intended use

Installation parameters, Methods for application of torque

Annex B2

Minimum edge distance and spacing


For the calculation of minimum spacing and minimum edge distance of fasteners in combination with different thickness of concrete member the following equation shall be fulfilled:

 $A_{i,req} < A_{i,ef}$

Table B3: Required area Ai,req

HIT-Z-D TP M16; HIT-Z-R-D TP M16, HIT-Z M20			M16	M20
Cracked concrete	$A_{i,req}$	[mm²]	94700	148000
Non-cracked concrete	A _{i,req}	[mm²]	128000	198000

Table B4: Effective area Ai,ef

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3
with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20

Intended use
Installation parameters: member thickness, spacing and edge distances

Annex B3

Table B5: Maximum working time and minimum curing time

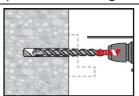
Tomporature in the	HIT-HY 200-A and	HIT-HY 200-A V3	200-R V3		
Temperature in the base material T 1)	Maximum working time t _{work}	Minimum curing time t _{cure}	Maximum working time twork	Minimum curing time t _{cure}	
5 °C	25 min	2 hours	45 min	4 hours	
>5 °C to 10 °C	15 min	75 min	30 min	2,5 hours	
>10 °C to 20 °C	7 min	45 min	15 min	1,5 hours	
>20 °C to 30 °C	4 min	30 min	9 min	1 hour	
>30 °C to 40 °C	3 min	30 min	6 min	1 hour	

¹⁾ The minimum foil pack temperature is 0 °C.

Table B6: Parameters of drilling and setting tools

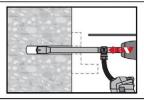
Elements		Drill					
Anchor rod	Hamme	r drilling					
HIT-Z-D TP M16 HIT-Z-R-D TP M16 HIT-Z M20	Drill bit	Hollow drill bit TE- CD, TE-YD ¹⁾	Diamond coring	Piston plug			
Manager—water				В			
Size	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-SZ			
M16	18	18	18	18			
M20	22	22	22	22			

With vacuum cleaner Hilti VC 10/20/40 (automatic filter cleaning activated, eco mode off) or a vacuum cleaner providing equivalent cleaning performance in combination with the specified Hilti hollow drill bit TE-CD or TE-YD.


Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	
Intended use Maximum working time and minimum curing time Cleaning and setting tools	Annex B4

Installation instruction

Hole drilling


a) Hammer drilling

<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

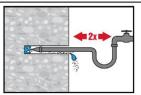
<u>Pre-setting</u>: Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit. After drilling is complete, proceed to the "injection preparation" step in the installation instruction.

b) Hammer drilling with hollow drill bit

Pre- / Through-setting: Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with with vacuum attachment following the requirements given in Table B6. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual (see Annex A1 - Borehole condition ②). After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring

Diamond coring is permissible when suitable diamond core drilling machines and corresponding core bits are used.


<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth.

Pre-setting: Drill hole to the required embedment depth.

Drill hole cleaning

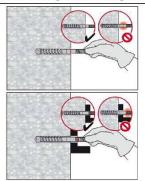
a) No cleaning required for hammer drilled holes.

b) Hole flushing and evacuation required for wet-drilled diamond cored holes.

Flush 2 times from the back of the hole over the whole length until water runs clear. Water-line pressure is sufficient.

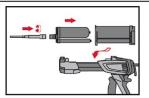
Blow 2 times from the back of the hole (if needed with nozzle extension) with oil-free compressed air (min. 6 bar at 6 m³/h) to evacuate the water.

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20


Intended use

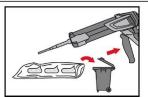
Installation instructions

Annex B5



Checking of setting depth

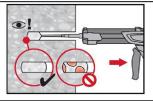
Mark the element and check the setting depth. The element has to fit in the hole until the required embedment depth. If it is not possible to insert the element to the required embedment depth, remove the dust in the drill hole or drill deeper.


Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

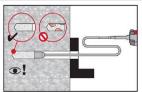
Observe the instruction for use of the dispenser and the mortar.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

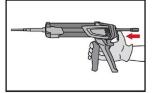


The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are:

2 strokes for 330 ml foil pack,


3 strokes for 500 ml foil pack.

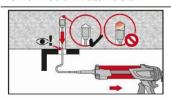
Inject adhesive from the back of the drill hole without forming air voids



Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

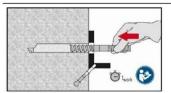
The quantity of mortar should be selected so that the annular gap in the borehole is filled.

Injection is possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug HIT-SZ 18. Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure. The quantity of mortar should be selected so that the annular gap in the borehole is filled.

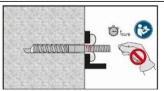

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20

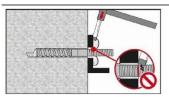
Intended use Installation instructions Annex B6



Overhead installation

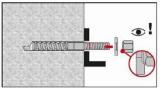

For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug HIT-SZ 18. Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

Setting the element

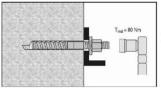


Before use, verify that the element is dry and free of oil and other contaminants.

Set element to the required embedment depth before working time twork has elapsed. The working time twork is given in Table B5.

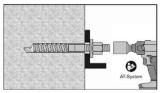


After required curing time tcure (see Table B5) remove excess mortar.

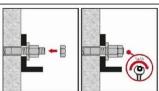


Do not damage thread of HIT-Z(-R)-D TP while removing excess mortar.

Final assembly with sealing washer and lock nut



Orient the round part of the calotte nut to the sealing washer and install.


a) Torque wrench

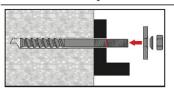
The required installation torque for moment with torque wrench is given in Table B1.

b) Machine torqueing

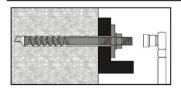
Alternative torqueing is given in Table B2. Read the machine instruction manual from manufacture carefully

Apply the lock nut and tighten with a 1/4 to 1/2 turn.

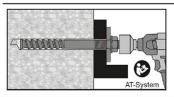
Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20


Intended use

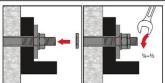
Installation instructions


Annex B7

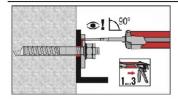
Final assembly with Hilti filling set and lock nut



Use Hilti Filling Set with standard nut. Observe the correct orientation of filling washer and spherical washer


a) Torque wrench

The required installation torque moment with torque wrench is given in Table B1.


b) Machine torqueing

Alternative torqueing is given in Table B2. Read the machine instruction manual from manufacture carefully

Apply the lock nut and tighten with a 1/4 to 1/2 turn.

Filling of the annular gap

Fill the annular gap between the anchor and fixture completely with Hilti injection mortar HIT-HY 200 or HIT-HY 200 V3. The static mixer nozzle must be put orthogonally on the filling hole. Follow the installation instructions supplied with the HIT-HY 200 or HIT-HY 200 V3 foil pack.

After required curing time t_{cure} (see Table B5), the fastener can be loaded.

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20

Intended use

Installation instructions

Annex B8

Table C1: Essential characteristics for HIT-Z(-R)-D TP under tension load in case of static and quasi-static loading

HIT-Z-D TP M16; HIT-Z-R-D TP M16,	M16	M20		
Installation factor	γinst	[-]		1,0
Steel failure				
HIT-Z-D TP, HIT-Z-R-D TP, HIT-Z	N _{Rk,s}	[kN]	1)	1)
Pull-out failure				<u> </u>
In uncracked concrete C20/25				
Temperature range I: 24 °C / 40 °C	$N_{Rk,p,ucr}$	[kN]	115	150
Temperature range II: 50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	105	135
In cracked concrete C20/25				
Temperature range I: 24 °C / 40 °C	$N_{Rk,p,cr}$	[kN]	105	135
Temperature range II: 50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	95	125
Factor for the influence of concrete strength class	Ψο	[-]	1,0	1,0
$N_{Rk,p} = N_{Rk,p,(C20/25)} \cdot \psi_c$				
Concrete cone failure				
Effective embedment depth	h _{ef}	[mm]	125	140
Factor for uncracked concrete	k _{ucr,N}	[-]	11,0	
Factor for cracked concrete	k _{cr,N}	[-]	Α	7,7
Edge distance	C _{cr,N}	[mm]		$1,5 \cdot h_{\text{ef}}$
Spacing	Scr,N	[mm]	3,0 · hef	
Splitting failure				
	h / h _{ef} ≥ 2	2,35	1,5 ⋅ h _{ef}	h/h _{nom}
Edge distance c _{cr,sp} [mm] for	2,35 > h / he	_f > 1,35	6,2 · h _{ef} - 2,0 · h	1,35
	h / $h_{ef} \le 1,35$		$3,5 \cdot h_{\text{ef}}$	1,5·h _{nom} 3,5·h _{nom}
Spacing	S cr,sp	[mm]	2·c _{cr,sp}	

¹⁾ No performance assessed based on EAD 330250-00-0601.

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	
Performances Essential characteristics under tension load in case of static and quasi-static loading	Annex C1

Table C2: Essential characteristics for HIT-Z(-R)-D TP under shear load in case of static and quasi-static loading

HIT-Z-D TP M16; HIT-Z-R-D TP M16, HIT-Z	M16	M20		
Installation factor	γinst	[-]	1,0	1,0
Steel failure without lever arm		·		
HIT-Z-D TP, HIT-Z-R-D TP, HIT-Z	$V^0_{Rk,s}$	[kN]	1)	1)
Ductility factor	k ₇		1,0	1,0
Steel failure with lever arm				
HIT-Z-D TP, HIT-Z-R-D TP, HIT-Z	M ⁰ Rk,s	[Nm]	1)	1)
Concrete pry-out failure				
Pry-out factor	k ₈	[-]	2,56	2,56
Concrete edge failure		·		
Effective length of fastener in shear loading	lf	[mm]	1	h _{ef}
Outside diameter of fastener	d _{nom}	[mm]	16	20

¹⁾ No performance assessed based on EAD 330250-00-0601.

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	
Performances Essential characteristics under shear load in case of static and quasi-static loading	Annex C2

Table C3: Essential characteristics under tension fatigue load in concrete (design method I acc. to TR 061)

Fastener			HIT-Z-D TP M16	HIT-Z-R-D TP M16	HIT-Z M20	
Steel failure						
Characteristic resistance [kN]				$\Delta N_{Rk,s,0,n}$		
		1	96,0	96,0	96,0	
		≤ 10 ³	70,0	70,3	70,0	
		≤ 3·10³	60,0	59,1	60,0	
		≤ 10 ⁴	48,9	46,4	48,9	
Number of cycles	n	≤ 3·10 ⁴	39,7	35,7	39,7	
		≤ 10 ⁵	31,6	26,2	31,6	
		≤ 3·10 ⁵	26,3	20,0	26,3	
		≤ 10 ⁶	22,5	15,9	22,5	
		8	18,8	12,4	18,8	
Partial factor γ _{Ms,N,fat} [-]			a	cc. to TR 061, Eq. (3)		
Concrete cone, pull-out and	splitting t	failure	ΔN Rk,(c/p.	$_{/\text{sp}),0,n} = \eta_{k,c,N,\text{fat},n} \cdot \mathbf{N}_{Rk,(c)}$	/p/sp) ¹⁾	
Effective embedment depth	h _{ef}	[mm]] 125 1			
Reduction factor		[-]	[-] $\eta_{k,c,N,fat,n}$			
		1	1	,00	1,00	
		≤ 10³	0	,75	0,75	
		≤ 3·10³	0	,71	0,71	
		≤ 10⁴	0,66		0,66	
Number of cycles	n	≤ 3⋅10⁴	0,62		0,62	
		≤ 10 ⁵	0,58		0,58	
		≤ 3·10 ⁵	0,55		0,55	
		≤ 10 ⁶	0	,52	0,52	
		8	0	,50	0,50	
Partial factor	γMc,fat	[-]		1,5	1,5	
Load transfer factor for fastene groups	er ΨFN	[-]	0	,79	0,79	

 $^{^{1)}}$ $N_{\text{Rk},\text{(c/p/sp)}}$ according to EN 1992-4 and Table C1

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	
Performances Essential characteristics under tension fatigue load in concrete (design method I acc. to TR 061)	Annex C3

Table C4: Essential characteristics under shear fatigue load in concrete (design method I acc. to TR 061)

Fastener			HIT-Z-D TP M16	HIT-Z-R-D TP M16	HIT-Z M20	
Steel failure						
Characteristic resistance		[kN]		$\Delta V_{Rk,s,0,n}$		
		1	48,0	57,0	48,0	
		≤ 10 ³	34,3	35,5	34,3	
		≤ 3·10³	28,9	28,7	28,9	
		≤ 10 ⁴	23,0	21,9	23,0	
Number of cycles	n	≤ 3·10 ⁴	18,3	16,8	18,3	
		≤ 10 ⁵	14,1	12,9	14,1	
		≤ 3·10 ⁵	11,4	10,5	11,4	
		≤ 10 ⁶	9,6	9,1	9,6	
		8	8,0	8,0	8,0	
Partial factor	γMs,V,fat	[-]	[-] acc. to TR 061, Eq. (3)			
Concrete edge failure, pry-ou	t failure		ΔV Rk,(c	$_{c,cp),0,n} = \eta_{k,c,V,fat,n} \cdot V_{Rk,(c)}$,cp) ¹⁾	
Effective length of fastener	lf	[mm]	125		140	
Outside diameter of fastener	d _{nom}	[mm]	16		20	
Reduction factor		[-]		ηκ,c,V,fat,n		
		1	1,00		1,00	
		≤ 10 ³	C),69	0,69	
		≤ 3·10³	C),63	0,63	
		≤ 10⁴	0,57		0,57	
Number of cycles	n	≤ 3·10 ⁴	0,53		0,53	
		≤ 10 ⁵	0,50		0,50	
		≤ 3·10 ⁵	0,50		0,50	
		≤ 10 ⁶	0),50	0,50	
		8	0),50	0,50	
Partial factor	γMc,fat	[-]] 1,5		1,5	
Load transfer factor for fastener groups	ΨFV	[-]	C),75	0,75	

 $^{^{1)}\,}V_{\text{Rk},(c,cp)}$ according to EN 1992-4 and Table C2

Annex C4

Table C5: Essential characteristics under tension fatigue load in concrete (design method II acc. to TR 061)

Fastener			HIT-Z-D TP M16	HIT-Z-R-D TP M16	HIT-Z M20	
Steel failure						
Characteristic resistance	ΔN _{Rk,s,0,∞}	[kN]	18,8	12,4	18,8	
Partial factor	γMs,N,fat	[-]	1,35			
Concrete cone, pull-out and splitting failure			$\Delta N_{Rk,(c/p/sp),0,\infty} = \eta_{k,c,N,fat,\infty} \cdot N_{Rk,(c/p/sp)}^{-1}$			
Effective embedment depth	h _{ef}	[mm]	1	140		
Reduction factor ¹⁾	ηk,c,N,fat,∞	[-]	0,50		0,50	
Partial factor	γMc,fat	[-]	1,5			
Load transfer factor for fastener groups	ΨFN	[-]	0,	79	0,79	

¹⁾ N_{Rk,(c/p/sp)} according to EN 1992-4 and Table C1.

Table C6: Essential characteristics under shear fatigue load in concrete (design method II acc. to TR 061)

Fastener			HIT-Z-D TP M16	HIT-Z-R-D TP M16	HIT-Z M20
Steel failure					
Characteristic resistance	$\Delta V_{Rk,s,0,\infty}$	[kN]	8,0	8,0	8,0
Partial factor	γMs,V,fat	[-]	1,35		
Concrete edge failure, pry-out failure			$\Delta V_{Rk,(c,cp),0,\infty} = \eta_{k,c,V,fat,\infty} \cdot V_{Rk,(c,cp)} $		
Effective length of fastener	lf	[mm]	125		140
Outside diameter of fastener	d _{nom}	[mm]	16		20
Reduction factor ¹⁾	ηk,c,V,fat,∞	[-]	0,50		0,50
Partial factor	γMc,fat	[-]	1,5		1,5
Load transfer factor for fastener groups	Ψ F V	[-]	0,75		0,75

 $^{^{1)}\,}V_{Rk,(c,cp)}$ according to EN 1992-4 and Table C2

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20			
Performances Essential characteristics under tension and shear fatigue load in concrete (design method II acc. to TR 061)	Annex C5		

Table C7: Essential characteristics under combined tension and shear fatigue load in concrete (design method I and II acc. to TR 061)

Fastener		HIT-Z-D TP M16	HIT-Z-R-D TP M16	HIT-Z M20
Steel failure				
Exponent for combined fatigue load [-]		$\alpha_{s} = \alpha_{sn}$		
	1	2,00	2,00	2,00
	≤ 10 ³	1,42	1,27	1,42
	≤ 3·10 ³	1,41	1,19	1,41
	≤ 10 ⁴	1,40	1,13	1,40
Number of cycles n	≤ 3·10 ⁴	1,40	1,11	1,40
	≤ 10 ⁵	1,40	1,10	1,40
	≤ 3·10 ⁵	1,40	1,10	1,40
	≤ 10 ⁶	1,40	1,10	1,40
	∞	1,40	1,10	1,40
Concrete failure				
Exponent for combined fatigue load [-]			ας	
Number of cycles n	≥ 1	1,5 1,5		

Injection System Hilti HIT-HY 200-A, HIT-HY 200-A V3 and HIT-HY 200-R V3 with HIT-Z-D TP M16, HIT-Z-R-D TP M16, HIT-Z M20	
Performances Essential characteristics under combined tension and shear fatigue load in concrete (design method I and II acc. to TR 061)	Annex C6