

HKD Push-in anchor, Single anchor application

Anchor version	Benefits
HKD Carbon steel with lip	simple and well proven approved, tested and confirmed by everyday jobsite experience
HKD-S(R) Carbon steel, stainless steel with lip HKD-E(R) Carbon steel, stainless steel without lip	 reliable setting thanks to simple visual check versatile for medium-duty fastening with bolts or threaded rods available in various materials and sizes for maximized coverage of possible applications

Concrete Corrosion resistance

European Technical Approval

CE conformity

PROFIS Anchor design software

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue	
European technical approval a)	DIBt, Berlin	ETA-02/0032 / 2010-04-22	

a) Anchors with anchorage depth hef = 25mm are not coverd by ETA

Basic loading data (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Concrete as specified in the table
- Steel failure
- Minimum base material thickness
- Concrete C 20/25, f_{ck.cube} = 25 N/mm²
- screw or rod with steel strength 5.8 (carbon steel) and/or A4-70 (stainless steel)

For details see Simplified design method

Mean Ultimate Resistance

	20					Hilt	ti tech	nical d	lata				
Anchor size		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tensile N _{Ru,m}													
HKD	[kN]	8,4	8,4	8,4	8,4	-	11,0	13,1	11,0	17,0	23,8	32,9	48,1
HKD-S, HKD-E	[kN]	8,2	-	-	-	10,6	10,8	16,6	10,8	16,6	23,3	34,5	47,1
HKD-SR, HKD-ER	[kN]	8,2	0.70	-	-	10,6	10,8	-	-	16,6	23,3	34,5	47,1
Shear V _{Ru,m}													
HKD	[kN]	5,5	6,9	6,9	6,9	-	9,4	10,1	11,0	12,2	20,1	37,1	53,9
HKD-S, HKD-E	[kN]	6,5	-	-	-	6,5	9, 1	9,1	9,6	10,4	18,3	28,5	45,1
HKD-SR, HKD-ER	[kN]	8,3	-	-	-	7,0	10,9	-	-	13,7	24,3	41,7	66,3

Characteristic Resistance

		Hilti	techn	ical d	ata	ac	cordin	g ETA	-02/00	32, is:	sue 20	10-04	-22
Anchor size		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tensile N _{Rk}													
HKD	[kN]	6,3	6,3	6,3	6,3	-	8,3	9,0	8,3	12,8	17,8	26,4	36,1
HKD-S, HKD-E	[kN]	6,3		- 2	-	8,3	8,3	9,0	8,3	12,8	17,8	26,4	36,1
HKD-SR, HKD-ER	[kN]	6,3		-	-	8,3	8,3	-	-	12,8	17,8	26,4	36,1
Shear V _{Rk}													
HKD	[kN]	5,0	6,3	6,3	6,3	-	8,6	9,2	10,0	11,0	18,3	33,8	49,0
HKD-S, HKD-E	[kN]	5,0	1-1	-	-	5,0	7,0	7,0	7,4	8,0	14,1	21,9	34,7
HKD-SR, HKD-ER	[kN]	6,2	-	-	-	6,4	8,4	2	-	10,5	18,7	32,1	51,0

Design Resistance

		Hilti	techn	ical d	ata	ac	cordin	g ETA	-02/00)32, is	sue 20	10-04	-22
Anchor size		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10×40	M12x50	M16x65	M20x80
Tensile N _{Rd}													
HKD	[kN]	4,2	4,2	4,2	4,2	-	5,5	6,0	5,5	8,5	11,9	17,6	24,0
HKD-S, HKD-E	[kN]	3,0	-	-	-	4,6	4,6	5,0	4,6	7,1	9,9	17,6	24,0
HKD-SR, HKD-ER	[kN]	3,0	-	-	-	4,6	4,6	-	-	7,1	9,9	17,6	24,0
Shear V _{Rd}													
HKD	[kN]	4,0	4,2	4,2	4,2	-	6,9	7,3	8,0	8,8	14,6	27,0	39,4
HKD-S, HKD-E	[kN]	3,9	-	- 1	-	3,9	5,5	5,5	5,9	6,4	11,3	17,5	27,8
HKD-SR, HKD-ER	[kN]	4,1		-	-	4,2	5,5	-	-	6,9	12,3	21,1	33,6

Recommended load

		Hilti	techn	ical d	ata	according ETA-02/0032, issue 2010-04-22							
Anchor size		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tensile N _{rec} a)													
HKD	[kN]	3,0	3,0	3,0	3,0	-	3,9	4,3	3,9	6,1	8,5	12,6	17,2
HKD-S, HKD-E	[kN]	2,1	-	-	-	3,3	3,3	3,6	3,3	5,1	7,1	12,6	17,2
HKD-SR, HKD-ER	[kN]	2,1	-	5	-	3,3	3,3	-	-	5,1	7,1	12,6	17,2
Shear V _{rec} a)													
HKD	[kN]	2,9	3,0	3,0	3,0	-	4,9	5,2	5,7	6,3	10,5	19,3	28,3
HKD-S, HKD-E	[kN]	2,8	-	-	-	2,8	3,9	4,2	3,9	4,6	8,1	12,5	19,8
HKD-SR, HKD-ER	[kN]	2,9	-	-	-	3,0	3,9	-	-	4,9	8,8	15,1	24,0

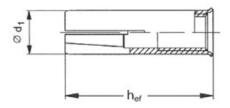
a) With overall partial safety factor for action γ = 1,4. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Materials

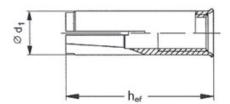
Mechanical properties of HKD, HKD-S, HKS-E, HKD-SR and HKD-ER

Anchor size	е		M6	M8	M10	M12	M16	M20
	HKD	[N/mm²]	570	570	570	570	640	590
Nominal tensile strength fuk	HKD-S HKD-E	[N/mm²]	560	560	510	510	-	460
strength i _{uk}	HKD-SR HKD-ER	[N/mm²]	540	540	540	540	-	540
	HKD	[N/mm²]	460	460	460	480	510	470
Yield strength f _{yk}	HKD-S HKD-E	[N/mm²]	440	440	410	410	-	375
	HKD-SR HKD-ER	[N/mm²]	355	355	355	355	-	355
Stressed	HKD	[mm²]	20,7	26,7	32,7	60,1	105	167
cross- section A _s	HKD-S (R) HKD-E (R)	[mm²]	20,9	26,1	28,8	58,7	-	163
Moment of	HKD	[mm³]	32,3	54,6	82,9	184	431	850
resistance W	HKD-S (R) HKD-E (R)	[mm³]	50	79	110	264	602	1191
Char. bending	With 5.8 Gr. Steel	[Nm]	7,6	18,7	37,4	65,5	167	325
resistance for rod or bolt M ⁰ _{Rk,s}	HKD-SR HKD-ER with A4-70	[Nm]	11	26	52	92	187	454

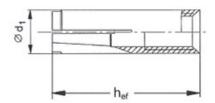
Material quality


Part		Material
	HKD	Steel Fe/Zn5 galvanised to min. 5 µm
Anchor Body	HKD-S HKD-E	Steel Fe/Zn5 galvanised to min. 5 µm
	HKD-SR HKD-ER	Stainless steel, 1.4401, 1.4404, 1.4571
	HKD	Steel material
Tapered expansion plug	HKD-S HKD-E	Steel material
	HKD-SR HKD-ER	Stainless steel, 1.4401, 1.4404, 1.4571

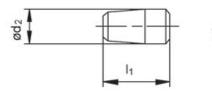
Anchor dimensions

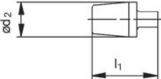

Anchor size Anchor version HKD HKD-S (R) HKD-E (R)			M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Effective anchorage depth	h _{ef}	[mm]	25	25	25	25	30	30	40	30	40	50	60	80
Anchor diameter	d ₁	[mm]	7,9	9,95	11,9	14,9	8	9,95	9,95	11,8	11,95	14,9	19,75	24,75
Plug diameter	d ₂	[mm]	5,1	6,35	8,1	9,7	5	6,5	6,35	8,2	8,2	10,3	13,8	16,4
Plug length	I ₁	[mm]	10	7	7	7,2	15	12	16	12	16	20	29	30

Anchor body

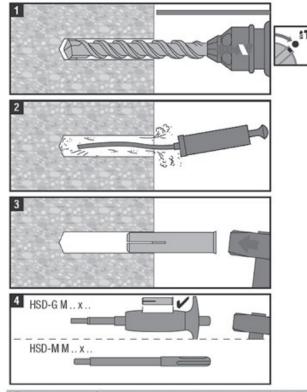

HKD

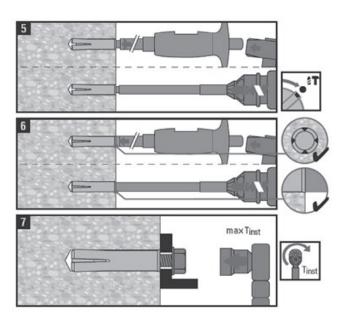
HKD-S and HKD-SR




HKD-E and HKD ER

Expansions plugs

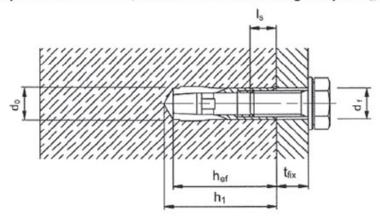



Setting

Installation equipment

Anchor size		M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65	M20x80
Rotary hammer						TE 2 –	TE 16					TE 40	0 – 80
Machine setting tool HSD		C.OF	:120	0,0	E/20	0.40	10.0	E120	10,40	12.05	12,50	16,65	20.490
Hand Setting tool HSD	0.000	6x25	0/30	8X2	5/30	8x40	10x2	5/30	10x40	12X25	12X50	16x65	20x80
Other tools	ner, torq	ue wre	nch, b	low out	pump								

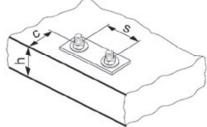
Setting instruction



For detailed information on installation see instruction for use given with the package of the product.

For technical data for anchors in diamond drilled holes please contact the Hilti Technical advisory service.

Setting details: depth of drill hole h₁ and effective anchorage depth h_{ef}


Setting details

Anchor size		10												
			M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10×40	M12x50	M16x65	M20x80
Nominal diameter of drill bit	d _o	[mm]	8	10	12	15	8	10	10	12	12	15	20	25
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,5	12,5	15,5	8,45	10,5	10,5	12,5	12,5	15,5	20,5	25,5
Depth of drill hole	h₁≥	[mm]	27	27	27	27	32	33	43	33	43	54	70	85
Caraujaa danth	$I_{s,min}$	[mm]	6	8	10	12	6	8	8	10	10	12	16	20
Screwing depth	I _{s,max}	[mm]	12	11,5	12	12	12,5	14,5	17,5	13	18	22	30,5	42
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	7	9	9	12	12	14	18	22
Effective anchorage depth	h _{ef}	[mm]	25	25	25	25	30	30	40	30	40	50	65	80
Max. torque moment	T_{inst}	[Nm]	4	8	15	35	4	8	8	15	15	35	60	120

Base material thickness, anchor spacing and edge distances

Anchor siz	e			M6x25 M8x25 M10x25 M12x25	M6x30 M8x30 M10x30	M8x40 M10x40	M12x50	M16x65	M20x80
Minimum b material thi		h _{min}	[mm]	100	100	100	100	130	160
Minimum s		S _{min}	[mm]	60	60	80	125	130	160
distance HKD-S (R) HKD-E (R)		C _{min}	[mm]	88	105	140	175	230	280
Minimum s	pacing	S _{min}	[mm]	80	60	80	125	130	160
HKD		for c≥	[mm]	140	105	140	175	230	280
Minimum e	edge	C _{min}	[mm]	100	80	140	175	230	280
distance HKD	,	for s≥	[mm]	150	120	80	125	130	160
Critical spa edge distar concrete co	nce for	S _{cr,N}	[mm]	80	90	120	150	200	240
HKD HKD-S (R) HKD-E (R)		C _{cr,N}	[mm]	40	45	60	75	100	120
Critical	HIND	S _{cr.sp}	[mm]	200	210	280	350	455	560
spacing and edge	HKD	C _{cr,sp}	[mm]	100	105	140	175	227	280
distance for splitting failure	HKD-S (R)	S _{cr,sp}	[mm]	176	210	280	350	455	560
	HKD-E (R)	C _{cr,sp}	[mm]	88	105	140	175	227	280
				62	~5				

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be

Simplified design method

Simplified version of the design method according ETAG 001, Annex C. Design resistance according data given in ETA-02/0032, issue 2010-04-22.

- Influence of concrete strength
- Influence of edge distance
- Influence of spacing
- Valid for a group of two anchors. (The method may also be applied for anchor groups with more than two anchors or more than one edge. The influencing factors must then be considered for each edge distance and spacing. The calculated design loads are then on the save side: They will be lower than the exact values according ETAG 001, Annex C. To avoid this, it is recommended to use the anchor design software PROFIS anchor)

The design method is based on the following simplification:

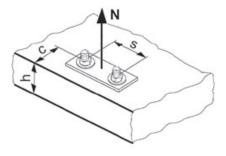
No different loads are acting on individual anchors (no eccentricity)

The values are valid for one anchor.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

Tension loading

The design tensile resistance is the lower value of


Steel resistance: N_{Rd,s}

- Concrete pull-out resistance: $N_{Rd,p} = N_{Rd,p}^0 \cdot f_B$

- Concrete cone resistance: $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$

. Concrete splitting resistance (only non-cracked concrete):

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$$

Basic design tensile resistance

Design steel resistance $N_{\text{Rd,s}}$ for HKD / HKD-E/S Steel Strength 5.8 and for HKD-ER/SR A4-70

			Hilti	techn	ical d	ata	ac	cordin	g ETA	-02/00)32, is:	sue 20	10-04	-22
Anchors	ize		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
	HKD	[kN]	6,7	10,3	12,6	23,6	17.0	11,4	12,2	13,3	14,7	24,4	45,0	65,3
$N_{Rd,s}$	HKD-S, HKD-E	[kN]	6,7	-	-	-	6,7	11,4	11,4	12,4	13,4	23,7	37,2	59,1
	HKD-SR, HKD-ER	[kN]	6,9	-	-	1-	7,0	9,2	-	-	11,5	20,4	35,1	55,7

Design pull-out resistance $N_{Rd,p} = N_{Rd,p}^0 \cdot f_B$

							Non-	cracke	ed con	crete				
			Hilti	techn	ical da	ata	ac	cordir	ng ETA	-02/00)32, is:	sue 20	10-04	-22
Anchor si	Anchor size				M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
	HKD	[kN]	-	-	-	-	-	-	6,0	-	-	12	-	-
$N^0_{Rd,p}$	HKD-S, HKD-E	[kN]	-	-	-	-	-	-	5,0	-	-	-	-	-
	HKD-SR, HKD-ER	[kN]		11-11	-	-		-	-	-	-	3.5	-	-

Design concrete cone resistance $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$ Design splitting resistance^{a)} $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$

							Non-	cracke	d con	crete				
			Hilti	techn	ical d	ata	ac	cordin	g ETA	-02/00)32, is	sue 20	10-04	-22
Anchor si	ze		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10×30	M10×40	M12x50	M16×65	M20×80
	HKD	[kN]	4,2	4,2	4,2	4,2	-	5,5	8,5	5,5	8,5	11,9	17,6	24,0
N ⁰ _{Rd,c}	HKD-S, HKD-E	[kN]	3,0	-	-	-	4,6	4,6	7,1	4,6	7,1	9,9	17,6	24,0
	HKD-SR, HKD-ER	[kN]	3,0	-		2	4,6	4,6	=	00 <u>0</u> 00	7,1	9,9	17,6	24,0

a) Splitting resistance must only be considered for non-cracked concrete

Influencing factors

Influence of concrete strength

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 \text{ a}}$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of edge distance a)

c/c _{cr,N}	0,1	0.2	0.2	0.4	0.5	0.6	0.7	0,8	0.0	1
c/c _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{1,N} = 0,7 + 0,3 \cdot c/c_{cr,N} \le 1$	0,73	0.76	0,79	0,82	0,85	0,88	0,91	0.94	0.97	1
$f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp} \le 1$	0,73	0,76	0,79	0,62	0,65	0,00	0,91	0,94	0,97	L
$f_{2,N} = 0,5 \cdot (1 + c/c_{cr,N}) \le 1$	0.55	0.60	0.65	0,70	0,75	0,80	0,85	0,90	0.95	1
$f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp}) \le 1$	0,55	0,00	0,03	0,70	0,75	0,00	0,03	0,90	0,95	1.5

a) The edge distance shall not be smaller than the minimum edge distance c_{min} given in the table with the setting details. These influencing factors must be considered for every edge distance.

Influence of anchor spacing a)

s/s _{cr,N}	0,1	0.2	0.2	0.4	0.5	0.6	0.7	0.0	0.0	4
s/s _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
$f_{3,N} = 0,5 \cdot (1 + s/s_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0.90	0.95	1
$f_{3,sp} = 0,5 \cdot (1 + s/s_{cr,sp}) \le 1$	0,55	0,60	0,05	0,70	0,75	0,80	0,85	0,90	0,95	-10

a) The anchor spacing shall not be smaller than the minimum anchor spacing s_{min} given in the table with the setting details. This influencing factor must be considered for every anchor spacing.

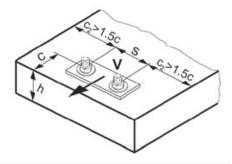
Influence of base material thickness

h/h _{ef}	2,0	2,2	2,4	2,6	2,8	3,0	3,2	3,4	3,6	≥ 3,68
$f_{h,sp} = [h/(2 \cdot h_{ef})]^{2/3}$	1	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,5

Influence of reinforcement

Anchor size	M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
$f_{re,N} = 0.5 + h_{ef}/200mm \le 1$	0,63 ^{a)}	0,63 ^{a)}	0,63 ^{a)}	0,63 ^{a)}	0,65 ^{a)}	0,65 ^{a)}	0,7 ^{a)}	0,65 ^{a)}	0,7 ^{a)}	0,75 ^{a)}	0,83 ^{a)}	0,9 ^{a)}

a) This factor applies only for dense reinforcement. If in the area of anchorage there is reinforcement with a spacing ≥ 150 mm (any diameter) or with a diameter ≤ 10 mm and a spacing ≥ 100 mm, then a factor f_{re,N} = 1 may be applied.


Shear loading

The design shear resistance is the lower value of

Steel resistance: V_{Rd,s}

. Concrete pryout resistance: $V_{Rd,cp} = k \cdot N_{Rd,c}$

- Concrete edge resistance: $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_h \cdot f_4 \cdot f_{hef} \cdot f_c$

Basic design shear resistance

Design steel resistance $V_{\text{Rd,s}}$ for HKD / HKD-E/S Steel Strength 5.8 and for HKD-ER/SR A4-70

			Hilti	techn	ical d	ata	ac	cordin	ig ETA	-02/00)32, is	sue 20	10-04	-22
Anchor s	ize		M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8×40	M10x30	M10×40	M12x50	M16x65	M20×80
	HKD	[kN]	4,0	6,2	7,5	14,1	-	6,9	7,3	8,0	8,8	14,6	27,0	39,6
$V_{Rd,s}$	HKD-S, HKD-E	[kN]	3,9	-	-	-	3,9	5,5	5,5	5,9	6,4	11,3	17,5	27,8
	HKD-SR, HKD-ER	[kN]	4,1	-	2	-	4,2	5,5	-	2	6,9	12,3	21,1	33,6

Design concrete pryout resistance $V_{Rd,cp} = k \cdot N_{Rd,c}^{a)}$

	Hilti	techn	ical d	ata	ac	cordir	g ETA	-02/00)32, is:	sue 20	10-04	-22
Anchor size	M6x25	M8x25	M10x25	M12x25	M6x30	M8×30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
k			1					:	2			

a) N_{Rd,c}: Design concrete cone resistance

Design concrete edge resistance^{a)} $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_b \cdot f_4 \cdot f_{hef} \cdot f_c$

Anchor size	M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8×40	M10x30	M10x40	M12x50	M16x65	M20x80
$V^0_{Rd,c}$ [kN]	5,8	8,4	11,3	16,4	5,9	8,5	8,5	11,4	11,5	16,8	27,1	39,2

a) For anchor groups only the anchors close to the edge must be considered

Influencing factors

Influence of concrete strength

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 a})$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of angle between load applied and the direction perpendicular to the free edge

Angle ß	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{v})^{2} + \left(\frac{\sin \alpha_{v}}{2.5}\right)^{2}}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Influence of base material thickness

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

Influence of anchor spacing and edge distance ^{a)} for concrete edge resistance: $f_4 = (c/h_{ef})^{1,5} \cdot (1 + s / [3 \cdot c]) \cdot 0,5$

c/h _{ef}	Single						Grou	ıp of t	wo an	chors	s/h _{ef}					
Critet	anchor	0.75	1.50	2.25	3.00	3.75	4.50	5.25	6.00	6.75	7.50	8.25	9.00	9.75	10.50	11.25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) The anchor spacing and the edge distance shall not be smaller than the minimum anchor spacing s_{min} and the minimum edge distance c_{min}.

Influence of embedment depth

Anchor size	M6x25	M8x25	M10x25	M12x25	M6x30	M8x30	M8×40	M10x30	M10x40	M12x50	M16x65	M20x80
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	0,34	0,23	0,17	0,12	0,46	0,32	0,51	0,23	0,38	0,38	0,36	0,35

Influence of edge distance a)

c/d		20		10				
$f_c = (d / c)^{0,19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

a) The edge distance shall not be smaller than the minimum edge distance c_{min}

Combined tension and shear loading

For combined tension and shear loading see section "Anchor Design".