

Hilti HIT-RE 500 with HIT-V / HAS in hammer drilled holes

Concrete

Small edge distance and spacing

Variable embedment depth

Fire resistance

Corrosion resistance

High corrosion resistance

European Technical Approval

CE conformity

PROFIS Anchor design software

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical approval a)	DIBt, Berlin	ETA-04/0027 / 2009-05-20
Fire test report	IBMB, Braunschweig	UB 3565 / 4595 / 2006-10-29 UB 3588 / 4825 / 2005-11-15
Assessment report (fire)	warringtonfire	WF 166402 / 2007-10-26 & suppl. WF 172920 / 2008-05-27

a) All data given in this section according ETA-04/0027, issue 2009-05-20.

For details see Simplified design method

Basic loading data (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- One typical embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C 20/25, f_{ck.cube} = 25 N/mm²
- Temperature range I
 - (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Installation temperature range +5°C to +40°C

Embedment depth ^{a)} and base material thickness for the basic loading data. Mean ultimate resistance, characteristic resistance, design resistance, recommended loads.

Anchor size	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Typical embedment depth [mm]	80	90	110	125	170	210	240	270	300	330	360
Base material thickness [mm]	110	120	140	165	220	270	300	340	380	410	450

a) The allowed range of embedment depth is shown in the setting details. The corresponding load values can be calculated according to the simplified design method.

Mean ultimate resistance: concrete C 20/25 - fck.cube = 25 N/mm², anchor HIT-V 5.8

			Dat	а ассо	rding E	ETA-04	/0027,	issue 2	2008-11	1-03		itional inical (
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Tensile N _{Ru,m}	HIT-V 5.8	[kN]	18,9	30,5	44,1	83,0	129,2	185,9	241,5	295,1	364,4	428,9	459,9
Shear V _{Ru,m}	HIT-V 5.8	[kN]	9,5	15,8	22,1	41,0	64,1	92,4	120,8	147,0	182,2	214,5	256,2

Characteristic resistance: concrete C 20/25 - fck.cube = 25 N/mm², anchor HIT-V 5.8

			Data according ETA-04/0027, issue 2008-11-03								0.000	Additional Hilti technical data		
Anchor size	1		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
Tensile N _{Rk}	HIT-V 5.8	[kN]	18,0	29,0	42,0	70,6	111,9	153,7	187,8	224,0	262,4	302,7	344,9	
Shear V _{Rk}	HIT-V 5.8	[kN]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0	173,5	204,3	244,0	

Design resistance: concrete C 20/25 - $f_{ck,cube}$ = 25 N/mm², anchor HIT-V 5.8

			Dat	а ассо	rding E	ETA-04	/0027,	issue 2	2008-11	1-03	Additional Hilti technical data			
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
Tensile N _{Rd}	HIT-V 5.8	[kN]	12,0	19,3	27,7	33,6	53,3	73,2	89,4	106,7	125,0	144,2	164,3	
Shear V _{Rd}	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0	138,8	163,4	195,2	

Recommended loads a): concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor HIT-V 5.8

			Data according ETA-04/0027, issue 2008-11-03 Additional Hilti technical data										
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Tensile N _{rec}	HIT-V 5.8	[kN]	8,6	13,8	19,8	24,0	38,1	52,3	63,9	76,2	89,3	103,0	117,3
Shear V _{rec}	HIT-V 5.8	[kN]	5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0	99,1	116,7	139,4

a) With overall partial safety factor for action γ = 1,4. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Service temperature range

Hilti HIT-RE 500 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C
Temperature range II	-40 °C to +58 °C	+35 °C	+58 °C
Temperature range III	-40 °C to +70 °C	+43 °C	+70 °C

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Materials

Mechanical properties of HIT-V / HAS

			Dat	а ассо	rding E	ETA-04	/0027,	issue 2	2008-11	1-03	Additional Hilti technical data		
Anchor siz	е		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
	HIT-V/HAS 5.8	[N/mm ²]	500	500	500	500	500	500	500	500	500	500	500
Nominal tensile	HIT-V/HAS 8.8	[N/mm ²]	800	800	800	800	800	800	800	800	800	800	800
strength fuk	HIT-V/HAS -R	[N/mm ²]	700	700	700	700	700	700	500	500	500	500	500
ou ongui iuk	HIT-V/HAS -HCR	[N/mm ²]	800	800	800	800	800	700	700	700	500	500	500
	HIT-V/HAS 5.8	[N/mm²]	400	400	400	400	400	400	400	400	400	400	400
Yield	HIT-V/HAS 8.8	[N/mm ²]	640	640	640	640	640	640	640	640	640	640	640
strength fyk	HIT-V/HAS -R	[N/mm ²]	450	450	450	450	450	450	210	210	210	210	210
	HIT-V/HAS -HCR	[N/mm ²]	600	600	600	600	600	400	400	400	250	250	250
Stressed	HAS	[mm²]	32,8	52,3	76,2	144	225	324	427	519	647	759	913
cross- section A _s	HIT-V	[mm²]	36,6	58,0	84,3	157	245	353	459	561	694	817	976
Moment of resistance	HAS	[mm³]	27,0	54,1	93,8	244	474	809	1274	1706	2321	2949	3891
W	HIT-V	[mm³]	31,2	62,3	109	277	541	935	1387	1874	2579	3294	4301

Material quality

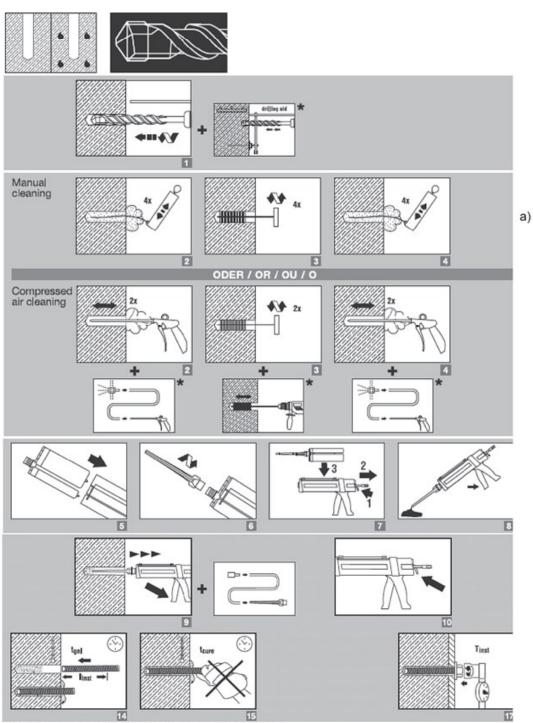
Part	Material
Threaded rod HIT-V(F),	Strength class 5.8, A ₅ > 8% ductile steel galvanized ≥ 5 µm,
HAS 5.8 M8 – M24 Threaded rod HIT-V(F), HAS 8.8 M27 – M39	 (F) hot dipped galvanized ≥ 45 μm, Strength class 8.8, A₅ > 8% ductile steel galvanized ≥ 5 μm, (F) hot dipped galvanized ≥ 45 μm,
Threaded rod HIT-V-R, HAS-R	Stainless steel grade A4, $A_5 > 8\%$ ductile strength class 70 for \leq M24 and class 50 for M27 to M30, 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Threaded rod HIT-V-HCR, HAS-HCR	High corrosion resistant steel, 1.4529; 1.4565 strength \leq M20: R _m = 800 N/mm², R _{p 0.2} = 640 N/mm², A ₅ > 8% ductile M24 to M30: R _m = 700 N/mm², R _{p 0.2} = 400 N/mm², A ₅ > 8% ductile
Moches	Steel galvanized, hot dipped galvanized
Washer ISO 7089	Stainless steel, 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
130 7009	High corrosion resistant steel, 1.4529; 1.4565
	Strength class 8, steel galvanized ≥ 5 µm, hot dipped galvanized ≥ 45 µm,
Nut EN ISO 4032	Strength class 70, stainless steel grade A4, 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	Strength class 70, high corrosion resistant steel, 1.4529; 1.4565

Anchor dimensions

Anchor size		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Anchor rod HAS, HAS-E, HAS-R, HAS-ER HAS-HCR		M8x80	M10x90	M12x110	M16x125	M20x170	M24x210	M27x240	M30x270	M33x300	M36x330	M39x360
Anchor embedment depth [[mm]	80	90	110	125	170	210	240	270	300	330	360
Anchor rod HIT-V, HIT-V-R, HIT-V-HCR			Ancho	r rods l	HIT-V (-R / -H	CR) are	e availa	ble in v	ariable	length	

Setting

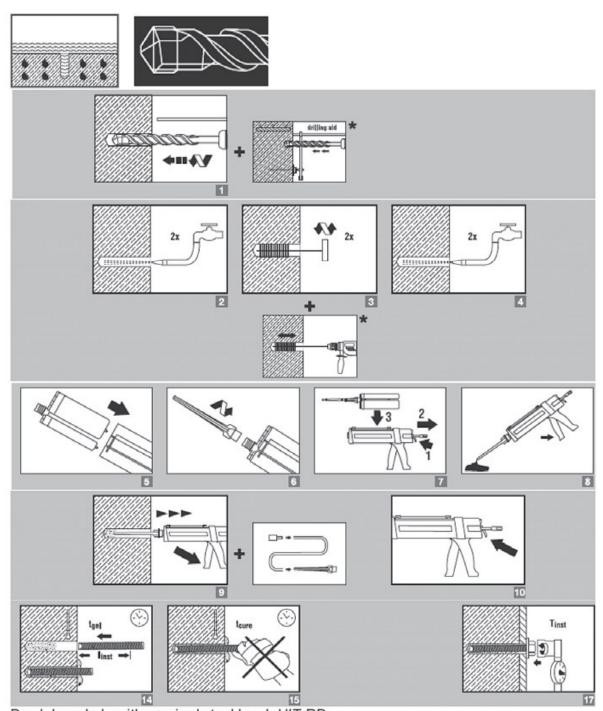
installation equipment


Anchor size	M8	M10	M12	M16	M20	M24	M27	M30
Rotary hammer		TE2 -	- TE16			TE40	- TE70	
Other tools	compre	compressed air gun or blow out pump, set of cleaning brushes, disp						spenser
Additional Hilti recommended tools		DD EC-1, DD 100 DD xxx ^{a)}						

a) For anchors in diamond drilled holes load values for combined pull-out and concrete cone resistance have to be reduced (see section "Setting instruction")

Setting instruction

Dry and water-saturated concrete, hammer drilling


Brush bore hole with required steel brush HIT-RB

a) Note: Manual cleaning only for hef ≤ 250 mm and anchor size ≤ M16

For detailed information on installation see instruction for use given with the package of the product.

Water filled bore hole or submerged, hammer drilling

Brush bore hole with required steel brush HIT-RB

For detailed information on installation see instruction for use given with the package of the product.

Curing time for general conditions

Data according ETA-04/0027, issue 2009-05-20							
Temperature of the base material	Working time in which anchor can be inserted and adjusted t _{gel}	Curing time before anchor can be fully loaded tcure					
40 °C	12 min	4 h					
30 °C to 39 °C	12 min	8 h					
20 °C to 29 °C	20 min	12 h					
15 °C to 19 °C	30 min	24 h					
10 °C to 14 °C	90 min	48 h					
5 °C to 9 °C	120 min	72 h					

For dry concrete curing times may be reduced according to the following table. For installation temperatures below +5 °C all load values have to be reduced according to the load reduction factors given below.

Curing time for dry concrete

	Additional Hilt	i technical data	
Temperature of the base material	Reduced curing time before anchor can be fully loaded t _{cure,dry}	Working time in which anchor can be inserted and adjusted t _{gel}	Load reduction factor
40 °C	4 h	12 min	1
30 °C	8 h	12 min	1
20 °C	12 h	20 min	1
15 °C	18 h	30 min	1
10 °C	24 h	90 min	1
5 °C	36 h	120 min	1
0 °C	50 h	3 h	0,7
-5 °C	72 h	4 h	0,6

Setting details

			Dat	а ассо	rding l	ETA-04	/0027,	issue 2	2009-0	5-20		itional nnical	
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	24	28	30	35	37	40	42
Effective anchorage	h _{ef,min}	[mm]	40	40	48	64	80	96	108	120	132	144	156
and drill hole depth range a)	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	660	720	780
Minimum base material thickness	h _{min}	[mm]		+ 30 n 100 m					h _{ef} +	2 d ₀			
Diameter of clearance hole in the fixture	d_{f}	[mm]	9	12	14	18	22	26	30	33	36	39	42
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150	165	180	195
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150	165	180	195
Critical spacing for splitting failure	S _{cr,sp}							2 c _{cr,sp}					
Critical edge distance for splitting failure b)	C _{cr,sp}	[mm]	1,0 · h	000000	for h	/ h _{ef} ≥ 2	500 010		2,0	Ţ			
Tor spitting failure			2,26 h	ef	for h	/ h _{ef} ≤	1,3			1,0-	h _{ef} 2,	26-h _{ef}	C _{cr,sp}
Critical spacing for concrete cone failure	S _{cr,N}							2 c _{cr,N}					
Critical edge distance for concrete cone failure c)	C _{cr,N}							1,5 h _{ef}					
Torque moment ^{d)}	T _{max}	[Nm]	10	20	40	80	150	200	270	300	330	360	390
			C S										

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

- a) h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: embedment depth)
- b) h: base material thickness (h ≥ h_{min})
- c) The critical edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the save side.
- d) This is the maximum recommended torque moment to avoid splitting failure during installation for anchors with minimum spacing and/or edge distance.

Simplified design method

Simplified version of the design method according ETAG 001, TR 029. Design resistance according data given in ETA-04/0027, issue 2009-05-20.

- Influence of concrete strength
- Influence of edge distance
- Influence of spacing
- Valid for a group of two anchors. (The method may also be applied for anchor groups with more than two anchors or more than one edge distance. The influencing factors must then be considered for each edge distance and spacing. The calculated design loads are then on the save side: They will be lower than the exact values according ETAG 001, TR 029. To avoid this, it is recommended to use the anchor design software PROFIS anchor)

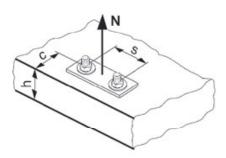
The design method is based on the following simplification:

No different loads are acting on individual anchors (no eccentricity)

The values are valid for one anchor.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

Tension loading


The design tensile resistance is the lower value of

- Steel resistance: N_{Rd,s}
- Combined pull-out and concrete cone resistance:

$$N_{\text{Rd},p} \; = \; N^0_{\;\;\text{Rd},p} \, \cdot \, f_{\text{B},p} \, \cdot \, f_{1,N} \, \cdot \, f_{2,N} \, \cdot \, f_{3,N} \, \cdot \, f_{h,p} \, \cdot \, f_{\text{re},N}$$

- Concrete cone resistance: $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$
- Concrete splitting resistance (only non-cracked concrete):

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$$

Basic design tensile resistance

Design steel resistance N_{Rd,s}

			Dat	а ассо	rding l	ETA-04	/0027,	issue 2	2009-0	5-20		itional nnical (
Anche	or size		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
	HAS 5.8	[kN]	11,3	17,3	25,3	48,0	74,7	106,7		-	-	-	2
	HIT-V 5.8	[kN]	12,0	19,3	28,0	52,7	82,0	118,0	153,3	187,3	231,3	272,3	325,3
	HAS 8.8	[kN]	-	-	-	-	-	-	231,3	281,3	345,1	404,8	486,9
NI.	HIT-V 8.8	[kN]	19,3	30,7	44,7	84,0	130,7	188,0	244,7	299,3	370,1	435,7	520,5
$N_{Rd,s}$	HAS (-E)-R	[kN]	12,3	19,8	28,3	54,0	84,0	119,8	75,9	92,0	113,2	132,8	159,8
	HIT-V-R	[kN]	13,9	21,9	31,6	58,8	92,0	132,1	80,4	98,3	122,6	144,3	172,4
	HAS (-E)-HCR	[kN]	18,0	28,0	40,7	76,7	120,0	106,7	144,8	175,7	134,8	158,1	190,2
	HIT-V-HCR	[kN]	19,3	30,7	44,7	84,0	130,7	117,6	152,9	187,1	144,6	170,2	203,3

Design combined pull-out and concrete cone resistance for anchors in diamond drilled holes ^{a)}

$$N_{Rd,p} = N^0_{Rd,p} \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$$

			Dat	Data according ETA-04/0027, issue 2009-05-20							Additional technical d		
Ancho	r size		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Typical embedment depth h _{ef,typ} [mm]			80	90	110	125	170	210	240	270	300	330	360
N ⁰ _{Rd.p}	Temperature range I	[kN]	15,3	21,5	31,6	44,9	76,3	105,6	135,7	157,5	171,0	203,3	232,9
N ⁰ _{Rd.p}	Temperature range II	[kN]	12,4	17,5	25,7	35,9	61,0	82,9	106,6	133,3	136,8	162,6	186,3
N ⁰ _{Rd.p}	Temperature range III	[kN]	7,7	10,8	15,8	22,4	35,6	52,8	63,0	78,8	82,1	97,6	111,8

a) Additional Hilti technical data (not part of ETA-04/0027, issue 2009-05-20):

The design values for combined pull-out and concrete cone resistance may be increased by 20 % for anchor installation in dry concrete (concrete not in contact with water before/during installation and curing).

Design concrete cone resistance ^{a)} $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Design splitting resistance $N_{Rd,sp}$ ^{a)} $= N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$

		Dat	а ассо	rding E	ETA-04	/0027,	issue 2	2009-0	5-20		itional inical d	
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
N ⁰ _{Rd,c}	[kN]	17,2	20,5	27,7	33,6	53,3	73,2	89,4	106,7	125,0	144,2	164,3

a) Additional Hilti technical data (not part of ETA-04/0027, issue 2009-05-20):

The design values for concrete cone and splitting resistance may be increased by 20 % for anchor installation in dry concrete (concrete not in contact with water before/during installation and curing).

Influencing factors

Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_{B,p} = (f_{ck,cube}/25N/mm^2)^{0,1}$	1	1,02	1,04	1,06	1,07	1,08	1,09

a) f_{ck.cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of embedment depth on combined pull-out and concrete cone resistance

$$f_{h,p} = h_{ef}/h_{ef,typ}$$

Influence of concrete strength on concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$ a)	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of edge distance a)

c/c _{cr,N}	0.4	0.2	0.2	0.4	0.5	0,6	0,7	0,8	0,9	1
c/c _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,0	0,9	1
$f_{1,N} = 0,7 + 0,3 \cdot c/c_{cr,N}$	0.72	0.76	0.70	0.00	0.05	0.00	0.01	0.04	0.07	1
$f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp}$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	'
$f_{2,N} = 0,5\cdot(1 + c/c_{cr,N})$	0.55	0.60	0.65	0,70	0.75	0.00	0,85	0.00	0.05	1
$f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp})$	0,55	0,60	0,65	0,70	0,75	0,80	0,05	0,90	0,95	-

a) The the edge distance shall not be smaller than the minimum edge distance c_{min} given in the table with the setting details. These influencing factors must be considered for every edge distance smaller than the critical edge distance.

Influence of anchor spacing a)

s/s _{cr,N}	0.1	0.2	0.2	0.4	0.5	0.6	0,7	0,8	0.0	4
s/s _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,0	0,9	1
$f_{3,N} = 0,5\cdot(1 + s/s_{cr,N})$	0,55	0,60	0,65	0,70	0.75	0,80	0,85	0.90	0.95	4
$f_{3,sp} = 0,5\cdot(1 + s/s_{cr,sp})$	0,55	0,60	0,05	0,70	0,75	0,00	0,05	0,90	0,95	1

a) The anchor spacing shall not be smaller than the minimum anchor spacing s_{min} given in the table with the setting details. This influencing factor must be considered for every anchor spacing.

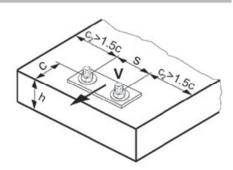
Influence of embedment depth on concrete cone resistance

$$f_{h,N} = (h_{ef}/h_{ef,typ})^{1.5}$$

Influence of reinforcement

h _{ef} [mm]	40	50	60	70	80	90	≥ 100
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$	0,7 a)	0,75 a)	0,8 a)	0,85 a)	0,9 a)	0,95 a)	1

a) This factor applies only for dense reinforcement. If in the area of anchorage there is reinforcement with a spacing ≥ 150 mm (any diameter) or with a diameter ≤ 10 mm and a spacing ≥ 100 mm, then a factor f_{re} = 1 may be applied.


Shear loading

The design shear resistance is the lower value of

Steel resistance: V_{Rd.s}

. Concrete pryout resistance: $V_{Rd,cp} = k \cdot \text{lower value of } N_{Rd,p} \text{ and } N_{Rd,c}$

Concrete edge resistance: V_{Rd,c} = V⁰_{Rd,c} · f_B · f_B · f_h · f₄ · f_{hef} · f_c

Basic design shear resistance

Design steel resistance V_{Rd,s}

			Dat	а ассо	rding E	ETA-04	/0027,	issue 2	2009-0	5-20		Hilti data	
Anche	or size		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
	HAS 5.8	[kN]	6,8	10,4	15,2	28,8	44,8	64,0	-	-	-		-
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0	138,8	163,4	195,2
	HAS 8.8	[kN]	-	-	- 2	2	-	2	139,2	168,8	207,0	242,9	292,2
.,	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2	222,1	261,4	312,3
$V_{Rd,s}$	HAS (-E)-R	[kN]	7,7	12,2	17,3	32,7	50,6	71,8	45,8	55,5	67,9	79,7	95,9
	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8	72,9	85,8	102,5
	HAS (-E)-HCR	[kN]	10,4	16,8	24,8	46,4	72,0	64,0	86,9	105,7	80,9	94,9	114,1
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	112,0	86,8	102,1	122,0

Design concrete pryout resistance $V_{Rd,cp}$ = lower value^{a)} of $k \cdot N_{Rd,p}$ and $k \cdot N_{Rd,c}$

$$k = 1$$
 for $h_{ef} < 60$ mm
 $k = 2$ for $h_{ef} \ge 60$ mm

a) N_{Rd,p}: Design combined pull-out and concrete cone resistance

N_{Rd,c}: Design concrete cone resistance

Design concrete edge resistance $V_{Rd,c} = V^0_{Rd,c} \cdot f_B \cdot f_b \cdot f_4 \cdot f_{hef} \cdot f_c$

Anchor size		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Non-cracked concrete									0			
V ⁰ _{Rd,c}	[kN]	5,9	8,6	11,6	18,7	27,0	36,6	44,5	53,0	62,1	71,7	81,9

Influencing factors

Influence of concrete strength

Concrete strength designation (ENV 206)		C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
f _B =	(f _{ck,cube} /25N/mm²) ^{1/2 a)}	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of angle between load applied and the direction perpendicular to the free edge

Angle ß	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{V})^{2} + \left(\frac{\sin \alpha_{V}}{2.5}\right)^{2}}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Influence of base material thickness

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

Influence of anchor spacing and edge distance ^{a)} for concrete edge resistance: $f_4 = (c/h_{ef})^{1.5} \cdot (1 + s / [3 \cdot c]) \cdot 0.5$

c/h _{ef}	Single						Grou	ıp of t	wo an	chors	s/h _{ef}					
Critef	anchor	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) The anchor spacing and the edge distance shall not be smaller than the minimum anchor spacing s_{min} and the minimum edge distance c_{min} .

Influence of embedment depth

h _{ef} /d	4	4,5	5	6	7	8	9	10	11
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	0,51	0,63	0,75	1,01	1,31	1,64	2,00	2,39	2,81
h _{ef} /d	12	13	14	15	16	17	18	19	20
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	3,25	3,72	4,21	4,73	5,27	5,84	6,42	7,04	7,67

Influence of edge distance a)

c/d	4	6	8	10	15	20	30	40
$f_c = (d / c)^{0.19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

a) The edge distance shall not be smaller than the minimum edge distance c_{min} .

Combined tension and shear loading

For combined tension and shear loading see section "Anchor Design".

